Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 510
Filtrar
1.
Rev. argent. reumatolg. (En línea) ; 34(2): 69-72, oct. 2023. graf
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1521648

RESUMO

Resumen Los síndromes esclerodermiformes suelen imitar muy bien una esclerosis sistémica progresiva, y es la presencia de ampollas cutáneas en áreas fotoexpuestas con hiperpigmentación los datos diferenciales para diagnosticar una porfiria. Presentamos el caso de un varón de 48 años con fotosensibilidad, fragilidad capilar, ampollas cutáneas e hiperpigmentación asociado a esclerodactilia, con pérdida cicatrizal distal de tejido en los dedos de las manos, que simuló a la perfección una esclerosis sistémica progresiva. La analítica mostró negatividad para anticuerpos antinucleares, antitopoisomerasa y anticentrómero, con valores altos de uroporfirinas en orina. El tratamiento con flebotomías e hidroxicloquina mejoró la fotosensibilidad y la fragilidad cutánea.


Abstract Sclerodermiform syndromes usually mimic progressive systemic sclerosis very well, with the presence of skin blisters in photo-exposed areas with hyperpigmentation being the differential data for diagnosing porphyria. We present the case of a 48-year old man with photosensitivity, capillary fragility, skin blisters, and hyperpigmentation associated with sclerodactyly with distal scar tissue loss on the fingers, which perfectly simulated progressive systemic sclerosis. The analysis showed negativity for antinuclear, antitopoisomerase and anticentromere antibodies, with high levels of uroporphyrins in urine. Phlebotomy and hydroxycloquine treatment improved photosensitivity and skin fragility.


Assuntos
Porfiria Cutânea Tardia , Escleroderma Sistêmico , Uroporfirinas
2.
Arch. pediatr. Urug ; 92(2): e307, dic. 2021. ilus, tab
Artigo em Espanhol | LILACS, UY-BNMED, BNUY | ID: biblio-1339135

RESUMO

Las porfirias son un grupo complejo y heterogéneo de defectos en la vía de la síntesis del hemo. La porfiria hepato eritropoyética es un subtipo muy poco frecuente y de presentación en la infancia, con compromiso cutáneo predominante. Describimos el caso clínico de una paciente de 5 años, que se presenta con lesiones cutáneas e hipertricosis, se confirma el diagnóstico por elevación de uroporfirinas en orina y secuenciación del gen UROD.


Porphyria is a complex and heterogeneous group of heme synthesis disorder. Hepato-erythropoietic porphyria is a very rare subtype that onsets in childhood, and shows predominant skin involvement. We describe the clinical case of a 5-year-old patient who showed skin lesions and hypertrichosis and whose diagnosis was confirmed due to increased uroporphyrins in urine and UROD gene sequencing


A porfiria é um grupo complexo e heterogêneo de distúrbios da síntese do grupo heme. A porfiria hepato-eritropoiética é um subtipo muito raro que se inicia na infância e mostra envolvimento predominante da pele. Descrevemos o caso clínico de uma paciente de 5 anos que apresentou lesões cutâneas e hipertricose e cujo diagnóstico foi confirmado por aumento de uroporfirinas na urina e sequenciamento do gene UROD.


Assuntos
Humanos , Feminino , Pré-Escolar , Vesícula/etiologia , Porfiria Hepatoeritropoética/complicações , Porfiria Hepatoeritropoética/genética , Porfiria Hepatoeritropoética/urina , Diabetes Mellitus Tipo 1/complicações , Hipertricose/etiologia , Uroporfirinogênio Descarboxilase/análise , Uroporfirinas/urina , Vesícula/tratamento farmacológico , Coproporfirinas/urina , Hipertricose/tratamento farmacológico
3.
Int J Mol Sci ; 22(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34576284

RESUMO

5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence is widely used for the intraoperative detection of malignant tumors. However, the fluorescence emission profiles of the accompanying necrotic regions of these tumors have yet to be determined. To address this, we performed fluorescence and high-performance liquid chromatography (HPLC) analyses of necrotic tissues of squamous cancer after 5-ALA administration. In resected human lymph nodes of metastatic squamous cell carcinoma, we found a fluorescence peak at approximately 620 nm in necrotic lesions, which was distinct from the PpIX fluorescence peak at 635 nm for viable cancer lesions. Necrotic lesions obtained from a subcutaneous xenograft model of human B88 oral squamous cancer also emitted the characteristic fluorescence peak at 620 nm after light irradiation: the fluorescence intensity ratio (620 nm/635 nm) increased with the energy of the irradiation light. HPLC analysis revealed a high content ratio of uroporphyrin I (UPI)/total porphyrins in the necrotic cores of murine tumors, indicating that UPI is responsible for the 620 nm peak. UPI accumulation in necrotic tissues after 5-ALA administration was possibly due to the failure of the heme biosynthetic pathway. Taken together, fluorescence imaging of UPI after 5-ALA administration may be applicable for the evaluation of tumor necrosis.


Assuntos
Ácido Aminolevulínico/administração & dosagem , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Uroporfirinas/metabolismo , Idoso , Ácido Aminolevulínico/uso terapêutico , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Necrose , Espectrometria de Fluorescência
4.
Sci Rep ; 11(1): 9601, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953217

RESUMO

Congenital erythropoietic porphyria (CEP) is a rare genetic disorder leading to accumulation of uro/coproporphyrin-I in tissues due to inhibition of uroporphyrinogen-III synthase. Clinical manifestations of CEP include bone fragility, severe photosensitivity and photomutilation. Currently there is no specific treatment for CEP, except bone marrow transplantation, and there is an unmet need for treating this orphan disease. Fluorescent porphyrins cause protein aggregation, which led us to hypothesize that uroporphyrin-I accumulation leads to protein aggregation and CEP-related bone phenotype. We developed a zebrafish model that phenocopies features of CEP. As in human patients, uroporphyrin-I accumulated in the bones of zebrafish, leading to impaired bone development. Furthermore, in an osteoblast-like cell line, uroporphyrin-I decreased mineralization, aggregated bone matrix proteins, activated endoplasmic reticulum stress and disrupted autophagy. Using high-throughput drug screening, we identified acitretin, a second-generation retinoid, and showed that it reduced uroporphyrin-I accumulation and its deleterious effects on bones. Our findings provide a new CEP experimental model and a potential repurposed therapeutic.


Assuntos
Acitretina/uso terapêutico , Desenvolvimento Ósseo/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Porfiria Eritropoética/tratamento farmacológico , Uroporfirinas/metabolismo , Acitretina/farmacologia , Animais , Osso e Ossos/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Porfiria Eritropoética/genética , Porfiria Eritropoética/metabolismo , Uroporfirinas/genética , Peixe-Zebra
5.
Genes (Basel) ; 12(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804186

RESUMO

The shell color of the Mollusca has attracted naturalists and collectors for hundreds of years, while the molecular pathways regulating pigment production and the pigments themselves remain poorly described. In this study, our aim was to identify the main pigments and their molecular pathways in the pearl oyster Pinctada margaritifera-the species displaying the broadest range of colors. Three inner shell colors were investigated-red, yellow, and green. To maximize phenotypic homogeneity, a controlled population approach combined with common garden conditioning was used. Comparative analysis of transcriptomes (RNA-seq) of P. margaritifera with different shell colors revealed the central role of the heme pathway, which is involved in the production of red (uroporphyrin and derivates), yellow (bilirubin), and green (biliverdin and cobalamin forms) pigments. In addition, the Raper-Mason, and purine metabolism pathways were shown to produce yellow pigments (pheomelanin and xanthine) and the black pigment eumelanin. The presence of these pigments in pigmented shell was validated by Raman spectroscopy. This method also highlighted that all the identified pathways and pigments are expressed ubiquitously and that the dominant color of the shell is due to the preferential expression of one pathway compared with another. These pathways could likely be extrapolated to many other organisms presenting broad chromatic variation.


Assuntos
Pigmentação/genética , Pinctada/genética , Animais , Bilirrubina/genética , Biliverdina/genética , Cor , Perfilação da Expressão Gênica/métodos , Heme/genética , Melaninas/genética , RNA-Seq/métodos , Transcriptoma/genética , Uroporfirinas/genética , Vitamina B 12/genética , Xantina/metabolismo
8.
Sci Rep ; 10(1): 17065, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051524

RESUMO

Photodynamic inactivation of Leishmania has been shown to render them non-viable, but retain their immunological activities. Installation of dual photodynamic mechanisms ensures complete inactivation of species in the Leishmania subgenus, raising the prospect of their safe and effective application as whole-cell vaccines against leishmaniasis. Here, we report the successful extension of this approach to L. braziliensis in the Viannia subgenus, viz. genetic engineering of promastigotes for cytosolic accumulation of UV-sensitive uroporphyrin (URO) and their loading with red light excitable phthalocyanines (PC) that was cationized by chemical engineering. The transgenic strategy used previously produced L. braziliensis transfectants, which gave the same phenotype of aminolevulinate (ALA)-inducible uroporphyria as found in Leishmania subgenus, indicative of pre-subgenus evolutionary origin for similar genetic deficiencies in porphyrin/heme biosynthesis. In the present study, 12 independent clones were obtained and were invariably ALA-responsive, albeit to different extent for uroporphyrinogenesis and UV-inactivation. In a separate study, L. braziliensis was also found, like other Leishmania spp., to take up diamino-PC (PC2) for red light inactivation. In vitro interactions of a highly uroporphyrinogenic clone with primary macrophages were examined with the intervention of URO/PC2-medated double-photodynamic inactivation to ascertain its complete loss of viability. Doubly sensitized L. braziliensis transfectants were photo-inactivated before (Strategy #1) or after (Strategy #2) loading of macrophages. In both cases, macrophages were found to take up L. braziliensis and degrade them rapidly in contrast to live Leishmania infection. The effector functions of macrophages became upregulated following their loading with L. braziliensis photodynamically inactivated by both strategies, including CD86 expression, and IL6 and NO production. This was in contrast to the immunosuppressive infection of macrophages with live parasites, marked by IL10 production. The results provide evidence that photodynamically inactivated L. braziliensis are susceptible to the degradative pathway of macrophages with upregulation of immunity relevant cytokine and co-stimulatory markers. The relative merits of the two loading strategies with reference to previous experimental vaccination were discussed in light of the present findings with L. braziliensis.


Assuntos
Indóis/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/efeitos da radiação , Macrófagos/imunologia , Macrófagos/parasitologia , Fármacos Fotossensibilizantes/farmacologia , Uroporfirinas/farmacologia , Ácido Aminolevulínico/farmacologia , Animais , Animais Geneticamente Modificados , Feminino , Humanos , Imunidade Inata , Técnicas In Vitro , Isoindóis , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Protozoárias/imunologia , Raios Ultravioleta
9.
Microb Cell Fact ; 19(1): 118, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487216

RESUMO

BACKGROUND: Hydrogenobyrinic acid is a key intermediate of the de-novo aerobic biosynthesis pathway of vitamin B12. The introduction of a heterologous de novo vitamin B12 biosynthesis pathway in Escherichia coli offers an alternative approach for its production. Although E. coli avoids major limitations that currently faced by industrial producers of vitamin B12, such as long growth cycles, the insufficient supply of hydrogenobyrinic acid restricts industrial vitamin B12 production. RESULTS: By designing combinatorial ribosomal binding site libraries of the hemABCD genes in vivo, we found that their optimal relative translational initiation rates are 10:1:1:5. The transcriptional coordination of the uroporphyrinogen III biosynthetic module was realized by promoter engineering of the hemABCD operon. Knockdown of competitive heme and siroheme biosynthesis pathways by RBS engineering enhanced the hydrogenobyrinic acid titer to 20.54 and 15.85 mg L-1, respectively. Combined fine-tuning of the heme and siroheme biosynthetic pathways enhanced the hydrogenobyrinic acid titer to 22.57 mg L-1, representing a remarkable increase of 1356.13% compared with the original strain FH215-HBA. CONCLUSIONS: Through multi-level metabolic engineering strategies, we achieved the metabolic balance of the uroporphyrinogen III biosynthesis pathway, eliminated toxicity due to by-product accumulation, and finally achieved a high HBA titer of 22.57 mg L-1 in E. coli. This lays the foundation for high-yield production of vitamin B12 in E. coli and will hopefully accelerate its industrial production.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/metabolismo , Engenharia Metabólica , Uroporfirinas/biossíntese , Vitamina B 12/biossíntese , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Óperon
10.
Nat Commun ; 11(1): 864, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054833

RESUMO

Siroheme is the central cofactor in a conserved class of sulfite and nitrite reductases that catalyze the six-electron reduction of sulfite to sulfide and nitrite to ammonia. In Salmonella enterica serovar Typhimurium, siroheme is produced by a trifunctional enzyme, siroheme synthase (CysG). A bifunctional active site that is distinct from its methyltransferase activity catalyzes the final two steps, NAD+-dependent dehydrogenation and iron chelation. How this active site performs such different chemistries is unknown. Here, we report the structures of CysG bound to precorrin-2, the initial substrate; sirohydrochlorin, the dehydrogenation product/chelation substrate; and a cobalt-sirohydrochlorin product. We identified binding poses for all three tetrapyrroles and tested the roles of specific amino acids in both activities to give insights into how a bifunctional active site catalyzes two different chemistries and acts as an iron-specific chelatase in the final step of siroheme synthesis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Heme/análogos & derivados , Metiltransferases/química , Metiltransferases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Eletroquímica , Ferroquelatase/química , Ferroquelatase/genética , Ferroquelatase/metabolismo , Heme/biossíntese , Heme/química , Metiltransferases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Especificidade por Substrato , Tetrapirróis/química , Tetrapirróis/metabolismo , Uroporfirinas/química , Uroporfirinas/metabolismo
11.
Cell Mol Gastroenterol Hepatol ; 8(4): 535-548, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31233899

RESUMO

Genetic porphyrias comprise eight diseases caused by defects in the heme biosynthetic pathway that lead to accumulation of heme precursors. Consequences of porphyria include photosensitivity, liver damage and increased risk of hepatocellular carcinoma, and neurovisceral involvement, including seizures. Fluorescent porphyrins that include protoporphyrin-IX, uroporphyrin and coproporphyrin, are photo-reactive; they absorb light energy and are excited to high-energy singlet and triplet states. Decay of the porphyrin excited to ground state releases energy and generates singlet oxygen. Porphyrin-induced oxidative stress is thought to be the major mechanism of porphyrin-mediated tissue damage. Although this explains the acute photosensitivity in most porphyrias, light-induced porphyrin-mediated oxidative stress does not account for the effect of porphyrins on internal organs. Recent findings demonstrate the unique role of fluorescent porphyrins in causing subcellular compartment-selective protein aggregation. Porphyrin-mediated protein aggregation associates with nuclear deformation, cytoplasmic vacuole formation and endoplasmic reticulum dilation. Porphyrin-triggered proteotoxicity is compounded by inhibition of the proteasome due to aggregation of some of its subunits. The ensuing disruption in proteostasis also manifests in cell cycle arrest coupled with aggregation of cell proliferation-related proteins, including PCNA, cdk4 and cyclin B1. Porphyrins bind to native proteins and, in presence of light and oxygen, oxidize several amino acids, particularly methionine. Noncovalent interaction of oxidized proteins with porphyrins leads to formation of protein aggregates. In internal organs, particularly the liver, light-independent porphyrin-mediated protein aggregation occurs after secondary triggers of oxidative stress. Thus, porphyrin-induced protein aggregation provides a novel mechanism for external and internal tissue damage in porphyrias that involve fluorescent porphyrin accumulation.


Assuntos
Porfirias/genética , Porfirias/metabolismo , Porfirias/fisiopatologia , Animais , Carcinoma Hepatocelular/metabolismo , Dermatite Fototóxica/metabolismo , Dermatite Fototóxica/fisiopatologia , Heme/metabolismo , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Oxirredução , Estresse Oxidativo/fisiologia , Transtornos de Fotossensibilidade , Porfirinas/metabolismo , Agregados Proteicos , Protoporfirinas , Uroporfirinas , Peixe-Zebra
12.
Angew Chem Int Ed Engl ; 58(31): 10756-10760, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31115943

RESUMO

The B12 cofactors instill a natural curiosity regarding the primordial selection and evolution of their corrin ligand. Surprisingly, this important natural macrocycle has evaded molecular scrutiny, and its specific role in predisposing the incarcerated cobalt ion for organometallic catalysis has remained obscure. Herein, we report the biosynthesis of the cobalt-free B12 corrin moiety, hydrogenobyric acid (Hby), a compound crafted through pathway redesign. Detailed insights from single-crystal X-ray and solution structures of Hby have revealed a distorted helical cavity, redefining the pattern for binding cobalt ions. Consequently, the corrin ligand coordinates cobalt ions in desymmetrized "entatic" states, thereby promoting the activation of B12 -cofactors for their challenging chemical transitions. The availability of Hby also provides a route to the synthesis of transition metal analogues of B12 .


Assuntos
Corrinoides/biossíntese , Uroporfirinas/metabolismo , Vitamina B 12/metabolismo , Biocatálise , Cobalto/química , Cobalto/metabolismo , Corrinoides/química , Ligantes , Estrutura Molecular , Uroporfirinas/química , Vitamina B 12/química
13.
Dalton Trans ; 48(18): 6083-6090, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30778451

RESUMO

The crystal structure of Bacillus subtilis SirB, which catalyses the insertion of Fe2+ into the substrate sirohydrochlorin (SHC) in siroheme biosynthesis, is reported herein as the last of the structures of class II chelatases. The structure of SirB with Co2+ showed that the active site of SirB is located at the N-terminal domain with metal-binding amino acid residues His10, Glu43, and His76, which was also predicted for CbiX, but is distinct from the C-terminal active sites of CbiK and HemH. The biosynthetic model reactions using SirB, Co2+ and uroporphyrin I or protoporphyrin IX as a SHC analogue revealed that SirB showed chelatase activity for uroporphyrin I, but not for protoporphyrin IX. Simulations of tetrapyrroles docking to SirB provided an insight into its tetrapyrrole substrate recognition: SHC and uroporphyrin I were suitably bound beside the Co2+ ion-binding site at the active site cavity; protoporphyrin IX was also docked to the active site but its orientation was different from those of the other two tetrapyrroles. Summarizing the present data, it was proposed that the key structural features for substrate recognition of SirB could be the hydrophobic area at the active site as well as the substituents of the tetrapyrroles.


Assuntos
Proteínas de Bactérias/química , Cobalto/química , Ferroquelatase/química , Uroporfirinas/química , Aminoácidos/química , Bacillus subtilis/metabolismo , Vias Biossintéticas , Domínio Catalítico , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Tetrapirróis/química
15.
Methods Mol Biol ; 1876: 125-140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30317478

RESUMO

Nitrogenase-like enzymes play a vital role in the reduction of the conjugated ring systems of diverse tetrapyrrole molecules. The biosynthesis of all bacteriochlorophylls involves the two-electron reduction of the C7-C8 double bond of the green pigment chlorophyllide, which is catalyzed by the nitrogenase-like two-component metalloenzyme chlorophyllide oxidoreductase (COR); whereas in all methanogenic microbes, another nitrogenase-like system, CfbC/D, is responsible for the sophisticated six-electron reduction of Ni2+-sirohydrochlorin a,c-diamide in the course of coenzyme F430 biosynthesis. The first part of this chapter describes the production and purification of the COR components (BchY/BchZ)2 and BchX2, the measurement of COR activity, and the trapping of the ternary COR complex; and the second part describes the strategy for obtaining homogenous and catalytically active preparations of CfbC2 and CfbD2 and a suitable method for extracting the reaction product Ni2+-hexahydrosirohydrochlorin a,c-diamide.


Assuntos
Metaloproteínas/isolamento & purificação , Metaloproteínas/metabolismo , Uroporfirinas/química , Oxirredutases do Álcool/química , Oxirredutases do Álcool/isolamento & purificação , Oxirredutases do Álcool/metabolismo , Domínio Catalítico , Clorofila/biossíntese , Metaloporfirinas/metabolismo , Metaloproteínas/química , Complexos Multienzimáticos , Níquel/química , Oxirredução
16.
Postgrad Med ; 130(8): 673-686, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30296862

RESUMO

Porphyrias are disorders caused by defects in the biosynthetic pathway of heme. Their manifestations can be divided into three distinct syndromes, each attributable to the accumulation of three distinct classes of molecules. The acute neurovisceral syndrome is caused by the accumulation of the neurotoxic porphyrin precursors, delta aminolevulinic acid, and porphobilinogen; the syndrome of immediate painful photosensitivity is caused by the lipid-soluble protoporphyrin IX and, the syndrome of delayed blistering photosensitivity, caused by the water-soluble porphyrins, uroporphyrin, and coproporphyrin. Porphyrias can manifest with one, or with a combination, of these syndromes, depending on whether one or more types of molecules are being accumulated. Iron plays a significant role in some of these conditions, as evidenced by improvements in both clinical manifestations and laboratory parameters, following iron depletion in porphyria cutanea tarda, or iron administration in some cases of X-linked erythropoietic protoporphyria. While the pathophysiology of a specific type of porphyrias, the protoporphyrias, appears to favor the administration of zinc, results so far have been conflicting, necessitating further studies in order to assess its potential benefit. The pathways involved in each disease, as well as insights into their pathobiological processes are presented, with an emphasis on the development of photosensitivity reactions.


Assuntos
Heme/metabolismo , Transtornos de Fotossensibilidade/complicações , Transtornos de Fotossensibilidade/fisiopatologia , Porfirias/complicações , Porfirias/fisiopatologia , Porfirinas/metabolismo , Ferro/metabolismo , Porfiria Cutânea Tardia/complicações , Porfiria Cutânea Tardia/fisiopatologia , Porfiria Eritropoética/complicações , Porfiria Eritropoética/fisiopatologia , Porfirias/classificação , Protoporfirinas/metabolismo , Uroporfirinas/metabolismo
17.
Pediatr Res ; 84(1): 80-84, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29795201

RESUMO

BACKGROUND: Heme is the prosthetic group of numerous proteins involved in vital processes such as oxygen transport, oxidative stress, and energetic mitochondrial metabolism. Free heme also plays a significant role at early stages of development and in cell differentiation processes. The metabolism of heme by the fetal placenta unit is not well-established in humans. METHODS: In a retrospective study, we measured heme precursors in the amniotic fluid (AF) of 51 healthy women, and 10 AF samples from pregnancies with either upper or lower intestinal atresia or ileus were also analyzed. RESULTS: We showed that the porphyrin precursors aminolevulinic acid, porphobilinogen, and protoporphyrin IX are present at the limit of detection in the AF. Total porphyrin levels decreased progressively from week 13 to week 33 (p < 0.01). Interestingly, uroporphyrin, initially detected as traces, increased with maturation, in contrast to coproporphyrin. Uro- and coproporphyrins were type I immature isomers (>90%), suggesting a lack of maturity in the fetal compartment of the heme pathway. Finally, the differential analysis of AF from normal and pathological pregnancies demonstrated the predominant hepatic origin of fetal porphyrins excreted in the AF. CONCLUSION: This study gives the first insight into heme metabolism in the AF during normal and pathological pregnancies.


Assuntos
Líquido Amniótico/química , Heme/química , Atresia Intestinal/metabolismo , Diagnóstico Pré-Natal/métodos , Adulto , Amniocentese/métodos , Diferenciação Celular , Coproporfirinas/química , Feminino , Humanos , Íleus/patologia , Atresia Intestinal/patologia , Cariotipagem , Idade Materna , Mitocôndrias/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Placenta/metabolismo , Porfirias/diagnóstico , Gravidez , Protoporfirinas/química , Estudos Retrospectivos , Uroporfirinas/química
18.
Sheng Wu Gong Cheng Xue Bao ; 33(1): 55-67, 2017 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-28959863

RESUMO

Biosynthesis of vitamin B12 (VB12) requires the methylation at positions C-2 and C-7 of the precursor uroporphyrinogen Ⅲ (urogen Ⅲ) to precorrin-2 by S-adenosyl-L-methionine uroporphyrinogen Ⅲ methyltransferase (SUMT), which is a potential bottleneck step. Most of SUMTs are inhibited by urogen Ⅲ and by-product S-adenosyl-L-homocysteine (SAH). In order to mine an SUMT that lacks such an inhibitory property to drive greater flux through the VB12 biosynthetic pathway, we cloned two SUMT genes (RCcobA1, RCcobA2) from Rhodobacter capsulatus SB1003 and expressed them in Escherichia coli BL21 (DE3). Thereafter, the two enzymes were purified and their specific activity of 27.3 U/mg, 68.9 U/mg were determined respectively. The latter was 2.4 times higher than PDcobA (27.9 U/mg) from Pseudomonas denitrifican. Additionally, RCcobA2 could tolerate over 70 µmol/L urogen Ⅲ, which has never been reported before. Hence, RCcobA2 can be used as an efficient enzyme to regulate the VB12 metabolic pathway and enhance VB12 production in industrial strains.


Assuntos
Metiltransferases/isolamento & purificação , Rhodobacter capsulatus/enzimologia , Escherichia coli , Metionina , Pseudomonas , S-Adenosilmetionina , Uroporfirinogênios , Uroporfirinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...